YES 1.2530000000000001 H-Termination proof of /home/matraf/haskell/eval_FullyBlown_Fast/List.hs
H-Termination of the given Haskell-Program with start terms could successfully be proven:



HASKELL
  ↳ BR

mainModule List
  ((isSuffixOf :: [Char ->  [Char ->  Bool) :: [Char ->  [Char ->  Bool)

module List where
  import qualified Maybe
import qualified Prelude

  isPrefixOf :: Eq a => [a ->  [a ->  Bool
isPrefixOf [] _ True
isPrefixOf [] False
isPrefixOf (x : xs) (y : ysx == y && isPrefixOf xs ys

  isSuffixOf :: Eq a => [a ->  [a ->  Bool
isSuffixOf x y reverse x `isPrefixOf` reverse y


module Maybe where
  import qualified List
import qualified Prelude



Replaced joker patterns by fresh variables and removed binding patterns.

↳ HASKELL
  ↳ BR
HASKELL
      ↳ COR

mainModule List
  ((isSuffixOf :: [Char ->  [Char ->  Bool) :: [Char ->  [Char ->  Bool)

module List where
  import qualified Maybe
import qualified Prelude

  isPrefixOf :: Eq a => [a ->  [a ->  Bool
isPrefixOf [] vw True
isPrefixOf vx [] False
isPrefixOf (x : xs) (y : ysx == y && isPrefixOf xs ys

  isSuffixOf :: Eq a => [a ->  [a ->  Bool
isSuffixOf x y reverse x `isPrefixOf` reverse y


module Maybe where
  import qualified List
import qualified Prelude



Cond Reductions:
The following Function with conditions
undefined 
 | False
 = undefined

is transformed to
undefined  = undefined1

undefined0 True = undefined

undefined1  = undefined0 False



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
HASKELL
          ↳ Narrow

mainModule List
  (isSuffixOf :: [Char ->  [Char ->  Bool)

module List where
  import qualified Maybe
import qualified Prelude

  isPrefixOf :: Eq a => [a ->  [a ->  Bool
isPrefixOf [] vw True
isPrefixOf vx [] False
isPrefixOf (x : xs) (y : ysx == y && isPrefixOf xs ys

  isSuffixOf :: Eq a => [a ->  [a ->  Bool
isSuffixOf x y reverse x `isPrefixOf` reverse y


module Maybe where
  import qualified List
import qualified Prelude



Haskell To QDPs


↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ Narrow
            ↳ AND
QDP
                ↳ QDPSizeChangeProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_primEqNat(Succ(wu1500), Succ(wu18000)) → new_primEqNat(wu1500, wu18000)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ Narrow
            ↳ AND
              ↳ QDP
QDP
                ↳ QDPSizeChangeProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_asAs(True, :(wu240, wu241), :(wu250, wu251), ba) → new_asAs(new_esEs(wu240, wu250, ba), wu241, wu251, ba)

The TRS R consists of the following rules:

new_esEs7(wu15, wu180) → error([])
new_esEs2(wu15, wu180, db, dc, dd) → error([])
new_primEqNat0(Succ(wu1500), Succ(wu18000)) → new_primEqNat0(wu1500, wu18000)
new_primEqNat0(Zero, Zero) → True
new_esEs3(wu15, wu180, cd) → error([])
new_esEs(wu240, wu250, ty_Double) → new_esEs10(wu240, wu250)
new_esEs13(wu15, wu180, cg) → error([])
new_esEs(wu240, wu250, ty_Int) → new_esEs7(wu240, wu250)
new_esEs(wu240, wu250, ty_Float) → new_esEs11(wu240, wu250)
new_esEs8(wu15, wu180) → error([])
new_esEs(wu240, wu250, ty_Bool) → new_esEs1(wu240, wu250)
new_primEqNat0(Succ(wu1500), Zero) → False
new_primEqNat0(Zero, Succ(wu18000)) → False
new_esEs(wu240, wu250, app(app(ty_@2, ca), cb)) → new_esEs12(wu240, wu250, ca, cb)
new_esEs6(wu15, wu180, ce, cf) → error([])
new_esEs(wu240, wu250, ty_Ordering) → new_esEs8(wu240, wu250)
new_esEs5(Char(wu150), Char(wu1800)) → new_primEqNat0(wu150, wu1800)
new_esEs4(wu15, wu180, da) → error([])
new_esEs(wu240, wu250, app(app(ty_Either, bg), bh)) → new_esEs6(wu240, wu250, bg, bh)
new_esEs9(wu15, wu180) → error([])
new_esEs(wu240, wu250, app(ty_[], be)) → new_esEs3(wu240, wu250, be)
new_esEs1(wu15, wu180) → error([])
new_esEs(wu240, wu250, ty_@0) → new_esEs0(wu240, wu250)
new_esEs12(wu15, wu180, de, df) → error([])
new_esEs11(wu15, wu180) → error([])
new_esEs(wu240, wu250, app(app(app(ty_@3, bb), bc), bd)) → new_esEs2(wu240, wu250, bb, bc, bd)
new_esEs10(wu15, wu180) → error([])
new_esEs(wu240, wu250, app(ty_Maybe, cc)) → new_esEs13(wu240, wu250, cc)
new_esEs0(wu15, wu180) → error([])
new_esEs(wu240, wu250, ty_Char) → new_esEs5(wu240, wu250)
new_esEs(wu240, wu250, ty_Integer) → new_esEs9(wu240, wu250)
new_esEs(wu240, wu250, app(ty_Ratio, bf)) → new_esEs4(wu240, wu250, bf)

The set Q consists of the following terms:

new_esEs6(x0, x1, x2, x3)
new_esEs(x0, x1, app(ty_[], x2))
new_esEs8(x0, x1)
new_esEs(x0, x1, ty_Char)
new_primEqNat0(Succ(x0), Zero)
new_esEs(x0, x1, ty_Int)
new_esEs(x0, x1, app(app(ty_Either, x2), x3))
new_esEs(x0, x1, ty_Bool)
new_esEs(x0, x1, app(ty_Ratio, x2))
new_primEqNat0(Zero, Succ(x0))
new_esEs(x0, x1, ty_Integer)
new_esEs7(x0, x1)
new_esEs10(x0, x1)
new_esEs12(x0, x1, x2, x3)
new_esEs9(x0, x1)
new_esEs(x0, x1, app(app(ty_@2, x2), x3))
new_esEs(x0, x1, ty_@0)
new_esEs11(x0, x1)
new_primEqNat0(Zero, Zero)
new_esEs(x0, x1, ty_Double)
new_esEs(x0, x1, app(app(app(ty_@3, x2), x3), x4))
new_esEs13(x0, x1, x2)
new_esEs5(Char(x0), Char(x1))
new_primEqNat0(Succ(x0), Succ(x1))
new_esEs1(x0, x1)
new_esEs4(x0, x1, x2)
new_esEs3(x0, x1, x2)
new_esEs(x0, x1, ty_Float)
new_esEs2(x0, x1, x2, x3, x4)
new_esEs0(x0, x1)
new_esEs(x0, x1, app(ty_Maybe, x2))
new_esEs(x0, x1, ty_Ordering)

We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ Narrow
            ↳ AND
              ↳ QDP
              ↳ QDP
QDP
                ↳ QDPSizeChangeProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_isPrefixOf(wu15, wu14, wu18, :(wu1710, wu1711), ba) → new_isPrefixOf(wu15, wu14, new_flip(wu18, wu1710, ba), wu1711, ba)

The TRS R consists of the following rules:

new_flip(wu14, wu15, ba) → :(wu15, wu14)

The set Q consists of the following terms:

new_flip(x0, x1, x2)

We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ Narrow
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ QDPSizeChangeProof

Q DP problem:
The TRS P consists of the following rules:

new_isPrefixOf0(wu14, wu15, :(wu160, wu161), wu17, ba) → new_isPrefixOf0(new_flip(wu14, wu15, ba), wu160, wu161, wu17, ba)

The TRS R consists of the following rules:

new_flip(wu14, wu15, ba) → :(wu15, wu14)

The set Q consists of the following terms:

new_flip(x0, x1, x2)

We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs: